All the RAG information refer to the Document 1, document 2 the video
July 1, 2024About 2 min
All the RAG information refer to the Document 1, document 2 the video
https://huggingface.co/docs/huggingface_hub/main/en/guides/cli
import pathlib
import textwrap
import google.generativeai as genai
from IPython.display import display
from IPython.display import Markdown
# Used to securely store your API key
from google.colab import userdata
def to_markdown(text):
text = text.replace('•', ' *')
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))
# Or use `os.getenv('GOOGLE_API_KEY')` to fetch an environment variable.
GOOGLE_API_KEY=userdata.get('PaLM_Key')
genai.configure(api_key=GOOGLE_API_KEY)
for m in genai.list_models():
if 'generateContent' in m.supported_generation_methods:
print(m.name)
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content("What is the meaning of life?")
OMP: Error #15: Initializing libiomp5md.dll, but found mk2iomp5md.dll already initialized.
OMP: Hint: This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable <span style="color:orange">KMP_DUPLICATE_LIB_OK=TRUE</span> to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/.
What Is The Best NeRF Software For Room Captures?
bmild/nerf
Researchers create open-source platform for Neural Radiance Field development
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
RealBasicVSR (Super Resolution for Video)
OpenJourney on Hugging Face
Stable Video Diffusion Image-to-Video Model Card (Image to Video)